DiscoverDataScience.org

  • Online
    • Online Masters in Business Analytics
    • Online Masters in Data Analytics
    • Online Masters in Data Science
    • Online Masters in Health Informatics
    • Online Masters in Information Systems
    • Top Affordable Online Master’s in Data Science
  • Programs
        • Bachelors in Data Science
        • Minor in Data Science
        • Masters in Data Science
        • MBA in Data Science / Data Analytics
        • Data Science PhD Programs
        • Additional Programs
        • Data Science Bootcamps
        • Data Science Certificate Programs
        • Associates Degree in Data Science
  • Related Programs
        • Masters in Business Analytics Programs
        • Masters in Data Analytics Programs
        • Masters in Health Informatics Programs
        • Masters in Information Systems Programs
        • PhD in Health Informatics
        • PhD in Information Systems
        • Other Degrees and Certificate Programs
        • Accounting Analytics
        • Actuarial Science
        • Cyber Security
        • Data Analytics and Visualization
        • Geographic Information Systems (GIS)
        • Sports Analytics
  • Schools By State
    • California
    • Florida
    • Georgia
    • Maryland
    • New Jersey
    • New York
    • Pennsylvania
    • Texas
    • Virginia
    • All Schools by State
  • Careers & Salary
        • Career Guides – How to Become:
        • Business Analyst
        • Business Intelligence Analyst
        • Data Analyst
        • Data Scientist
        • Machine Learning Engineer
        • Statistician
        • All Career Guides
        • Salary Guides
        • Careers in Data Science
        • Business Analyst
        • Data Analyst
        • Data Scientist
  • Resources
        • Articles
        • Data Science in the Health Care Industry
        • Data Storytelling
        • How to Use Deepfake
        • Journey through Data Science with the Data Professor
        • Top Reasons to Become a Data Scientist
        • What is Python and Why Important
        • + All Articles
        • FAQ
        • Data Analyst vs Data Scientist
        • Data Science vs Computer Science
        • Do You Need a PhD to Become a Data Scientist?
        • How to Get a Job as a Data Scientist?
        • Is Data Science Hard?
        • Is a PhD in Data Science Worth It?
        • What Can I Do With a Masters in Statistics?
        • What is Business Analytics?
        • What is Data Analytics?
        • +All FAQs
        • Social Good
        • Clean Water
        • Cyberbullying
        • Mental Health
        • Nonprofits
        • +All Social Good
        • Data Science in Industry
        • Artificial Intelligence AI
        • Biotechnology
        • Clean Energy
        • Health Care
        • Logistics
        • Marketing
        • Sports
        • + All Industries
        • Data Science Training Toolkits
        • Java
        • SAS
        • SQL
        • Tableau
        • +All Training
        • More Resources & Helpfull Guides
        • Data Science and Sustainability
        • Expert Interviews
        • Exploring a Career with Numbers
        • Income Sharing Agreements
        • Making Room for Diverse Populations in STEM
        • Scholarship Guide
        • +More Resources
        • Top Picks
        • Best Master’s Data Science Programs for 2023
        • Best Bachelor’s Data Science Programs for 2023
        • The Most Affordable Data Science Bachelor’s Programs for 2023
        • The Most Affordable Data Science Master’s Programs for 2023
FIND A PROGRAM
1
2
3
4
Sponsored Content

What is the difference between a Business Analyst and a Data Scientist?

Prior posts have discussed data science in detail by distinguishing a data analyst from a data scientist, a data engineer vs. a data scientist, and the difference between computer science and data science. As discussed in those articles, capturing big data, analyzing it, and using statistics to explain trends is a day in the life of a data scientist. Data scientists use programs like R and Python for their analysis and a large part of their job is graphically communicating their results.

Business analysts deviate from data scientists because their focus is on the business model itself. While a data scientist approaches business through a statistical lens, business analysts approach business with a more integrative approach.

Featured Programs:
Sponsored School(s)
Southern New Hampshire University Logo
Southern New Hampshire University
Featured Program: AS, BS and MS Data Analytics
Request Info
UC Berkeley Logo
UC Berkeley
Featured Program: UC Berkeley’s Master of Information and Data Science | Online
Request Info
George Mason University Logo
George Mason University
Featured Program: MS in Data Analytics Engineering and Certificate in Data Analytics
Request Info
Grand Canyon University Logo
Grand Canyon University
Featured Program: Online Technology Master's Degree Programs in the following career paths: IT Project Manager, Information Technology Manager, Database Administrator, Computer Systems Analyst and many more.
Request Info
Purdue Global Logo
Purdue Global
Featured Program: Associate of Applied Science in Information Technology - Data Analytics; Master of Science in Information Technology - Data Analytics; Professional Focus + Google Data Analytics Certificate
Request Info
Arizona State University - Online Logo
Arizona State University - Online
Featured Program: Online Bachelor of Science in Data Science
Request Info
University of Virginia Logo
University of Virginia
Featured Program: A top-tier master's in data science designed for working professionals
Request Info

Doctoring the Business Model

A business analyst’s job is like that of a doctor in that it assesses a business model as if it were a patient.

  1. Like a doctor, a business analyst is well trained in the field. In health, pediatricians are child specialists and cardiologists are heart specialists. Similarly, in industry, a business analyst for a car company is an expert on cars while a business analyst for a fast food restaurant is an expert on the fast food industry.
  2. A business analyst collects data on profits, losses, and growth to write reports, just like a doctor collects height, weight, and temperature to record patient information.
  3. Business analysts communicate with business departments as well as consumers and stakeholders in order to evaluate whether or not the business plan matches the company goals. This is similar to how a doctor communicates with nurses, office staff, and patients themselves to not only help diagnose and treat patients, but also help to make the practice run smoothly.

The business analyst will have a good understanding of the business model and the market it serves, including demographics, geographical location, and nearby competitors. The analyst would look through historical data, gaining insight into how the business has performed over time. They will also identify seasonal trends and advise management about such trends.

Consider the example of a fast food chain. A business analyst can look into the specifics of one store in the chain, assessing, for example, why sales are falling behind compared to historical sales at the same store or to current sales at other stores within the chain. Or, it can look at specifics for the whole chain, and how they compare with those at competing chains.

Business analysts use specific tools and models, such as time series, to perform analysis. They gain insight from past data and use it to assess future business performance. Think about Wall Street and quarterly reports by US companies. The published expectations are examples of final products business analysts derive via looking at past data, market trends, supply and demand, and so on.

After all the data collection, communication, and evaluation, the business analyst must then write a report. Excel should be utilized to generate clear graphs and charts displaying the information. Microsoft PPT and Word are also critical for a business analyst, as the reports need to be shared with personnel and must contain easy to understand models. The report will initiate a dialogue between the business analyst and the decision-makers within the company on the current business model and whether or not it should be modified.

Sometimes, a business analyst is expected to make software recommendations to address needs identified while assessing the business model. In this capacity, a business analyst must be able to work with programmers to communicate and modify systems as well as with users in order to train and address any questions or problems that arise.

FIND SCHOOLS
Sponsored Content

Data Scientists and the Market Pulse

Data scientists are different than business analysts in that they are not necessarily experts in a specific field, although they certainly can be. Data scientists are not tied to a specific business. Instead, they can use their skills and tools seamlessly to otherwise unrelated domains. They are data experts, not field experts, and instead of evaluating a business like a doctor or business analyst, the data scientist is more like a heart rate monitor. Data scientists take the current pulse of the market.

For example, if the same fast food chain above were to hire a data scientist, the scientist would want to capture every single sales event, including day of the week, food ordered, time ordered, and consumer information. Data scientists aren’t after summaries and overall profits like business analysts are. Instead, data scientists are looking to capture specific details in order to identify trends and patterns in the data.

A data scientist would attempt to integrate every single data event into a mathematical model that provides a scaffold for future event predictions. They know the advanced math and machine learning programs needed for such prediction models. For example, returning to the restaurant example, a complex statistical pipeline might reveal that Wednesday nights have been consistently low in sales. A very primitive math model to match the data to would be a linear model with a valley in the middle, assuming that all other times are exactly equal in sales. In other words, assuming that every day of the week was constant, the math model would be a horizontal line and there would be a dip in the line, like a sin curve, smack dab in the middle.

Having such a model in mind, data scientists can brainstorm strategies to boost Wednesday evening sales such as a “happy hour” or a “buy one get one free” promotion. A data scientist could then run simulations or compare to other franchises’ sales when the promotions are implemented to predict which method would result in the largest profit margins.

In addition to identifying such trends, a data scientist is also responsible for presenting the results and options to decision makers. They usually use statistical programming with visualization packages, although excel can be used as well.

The Tools of the Trade

The world of a business analyst is business-model centric. Either they are reporting, discussing, or modifying the business model. Not only must they be proficient with Microsoft Office, but they also must be excellent researchers and problem-solvers. Elite communication skills are also a must, as business analysts interact with every facet of the business. They must also be “team players” and able to interact and work with all departments within a company.

Data scientist’s job descriptions are much different than business analysts. They are mathematicians and understand programming language, as opposed to report writers and company communicators. They therefore have a different set of tools they use. Utilizing programming languages, understanding the principles of machine learning, and being able to generate and apply mathematical models are critical skills for a data scientist.

The commonality between business analysts and data scientists is that both of them require generating and communicating figure-rich reports. The software used to generate such reports may be the same between the two different positions, but the content of the reports will be substantially different.

Which is right for you?

If deciding between a future career between a business analyst and a data scientist, envisioning the type of position you want should steer you in the right direction. Do you like interacting with people? Do you like summarizing information to make reports? If so, you are more likely to be happy with a business analyst position than a data scientist because data scientists work more independently. Data scientist’s are also more technical in nature so if you have a more technical background a career as a data scientist might be for you.

FIND SCHOOLS
Sponsored Content
FIND A PROGRAM
1
2
3
4
Sponsored Content
  • Career Guides
  • Artificial Intelligence Engineer
  • Business Analyst
  • Business Intelligence Analyst
  • Data Analyst
  • Data Analytics Manager
  • Data Architect
  • Data Engineer
  • Data Mining Specialist
  • Database Administrator
  • Database Developer
  • Information Security Analyst
  • Machine Learning Engineer
  • Marketing Analyst
  • Software Developer
  • Statistician
  • Data Science Toolkit
  • Hadoop
  • Hive
  • Java
  • Python
  • R
  • SAS
  • SQL
  • Tableau
  • Data Science Articles
  • 10 Data Science Types
  • AI and Data Science
  • The Increasing Importance of Health Informatics
  • Python Growth Rate Predictions
  • Data-as-a-Service (DaaS)
  • Data Science Trends 2023
  • Cybersecurity Analyst vs. Engineer
  • Data Science in Education
  • Do You Need a PhD to Become a Data Scientist?
  • Best Big Data Conferences 2023
  • Data Science Focus Areas
  • Is a PhD in Data Science Worth It?
  • Is Data Science Hard?
  • Marketing Analytics Degree Online
  • Transferable Data Science Skills
  • Transitioning to Data Science
  • What Can I Do With a Masters in Statistics?
  • What Companies Hire Data Scientists?
  • What Is Cyber Science?
  • How to Read Crypto Charts
  • Breaking Down the Top Data Science Algorithms + Methods
  • Journey through Data Science with the Data Professor
  • How to Build a Data Science Portfolio & Resume
  • The Significance of Data Community Building
  • Developer Impostor Syndrome
  • How to Improve Programming Skills
  • Data Science Degree Vs. Training
  • Why Data Destruction is Important for your Business
  • Data Storytelling: Mastering Data Science’s Core Skillset
  • What is a Marketing Funnel and How to Create One
  • Building a Data Science Brand
  • Interviewing for Data Careers
  • Top 5 Reasons to Become a Data Scientist
  • What is Data Analytics?
  • What is Business Analytics?
  • What is Quantum Machine Learning?
  • What is Predictive Analytics?
  • Data Science vs. Statistics
  • Data Mining vs. Machine Learning
  • Business Analyst vs. Data Scientist
  • Data Scientist vs. Software Engineer
  • Data Science vs. Computer Science
  • Data Engineer vs. Data Scientist
  • Data Analyst vs. Data Scientist
  • How to Use Deepfake Technology
  • Java vs. JavaScript
  • What Is Python Used For & Why Is It Important to Learn?
  • Artificial Intelligence as a Trending Field
  • Data Science in Health Care
  • Guide to a Career in Criminal Intelligence
  • Guide to a Career in Health Informatics
  • Guide to Geographic Information System (GIS) Careers
  • Data Science Ph.D.
  • Expert Interview: Dr. Sudipta Dasmohapatra
  • Expert Interview: Sandra Altman
  • Expert Interview: Tony Johnson
  • Expert Interview: Bob Muenchen
  • Industries Using Data Science
  • Artificial Intelligence
  • Biotechnology
  • Finance
  • Health Care
  • Insurance
  • Law Enforcement
  • Logistics
  • Marketing and Advertising
  • Sports
  • Clean Energy
  • Online Guides
  • Data Science
  • Data Analytics
  • Business Analytics
  • Information Systems
  • Health Informatics
  • Programs
  • Online
  • Resources
  • Related Programs

© Copyright 2025 | https://www.discoverdatascience.org | All Rights Reserved

  • Home
  • About Us
  • Privacy Policy
  • Terms of Use