DiscoverDataScience.org

  • Programs
    • Bachelor’s in Data Science Programs
      • Data Science Minors
    • Master’s in Data Science Programs
    • Data Science PhD Programs
    • Data Science Certification Programs
    • Data Science Associate Degrees
    • Data Science Bootcamps
    • MBA in Data Science/Analytics
  • Online
    • Online Master’s in Data Science Programs
    • Online Master’s in Data Analytics Programs
    • Online Master’s in Business Analytics Programs
    • Online Master’s in Information Systems
    • Online Master’s in Health Informatics Programs
  • Resources
    • Data Science Job Guide
    • Guide to a Career in Analytics
    • Salary Guide to Careers in Data Science
    • Income Sharing Agreement Guide
    • GRE Prep Guide
    • Data Science and Sustainability
    • Guide to A Career in Health Informatics
    • Guide to Geographic Information System (GIS) Careers
    • Kids STEM Guide
    • Women in STEM
    • Minorities in STEM Guide
    • STEM Scholarship Guide
    • Big Data Internship Tips
    • Data Science in High Schools
    • Career with Numbers
    • Data Science and Libraries
    • Math Help Guide
    • Applying for a Big Data PhD
  • Related Programs
    • Master’s in Business Analytics Programs
    • Master’s in Data Analytics Programs
    • Master’s in Information Systems Programs
    • Master’s in Health Informatics Programs
    • Ph.D. Programs in Information Systems
    • Ph.D. in Health Informatics Programs
    • Sports Analytics Degree Programs
    • GIS Degree Programs
    • Accounting Analytics Degree Programs
    • Actuarial Science Degree Programs
    • Cyber Security Degree Programs
    • Data Analytics and Visualization Programs

Data Science Careers

As more and more industries see the benefit of using analytical data to improve business practices, big data and data science career opportunities are exploding. Employment in data science related careers is projected to grow 11 percent from 2014 to 2024, according to the Bureau of Labor Statistics (BLS), which is much faster than other careers.  

Data science related occupations are likely to enjoy excellent job prospects, as many companies report difficulties finding highly skilled workers. The good news is that there are a number of different kinds of paths that a data science career can take. The challenge is that it can sometimes be difficult to understand how these careers differ and what kinds of skill sets are required for each.

That’s where the Data Science Career Center comes in. The goal of this resource is to introduce the different types of careers in the data science field and summarize the skill set needed for each. For more comprehensive information about detailed roles, skills required, salary information, and job outlook, click on each individual career link.

Data Scientist

The title “data scientist” is relatively new and is not yet clearly defined. Due to the fact that it lacks specificity it can sometimes be perceived as an elevated synonym for “data analyst.” But that’s not the case. A data scientist possesses a combination of analytic, machine learning, data mining, and statistical skills in addition to experience with algorithms and coding. Data scientists also have expertise in the following programs: R, SAS, Python, Matlab, SQL, Hive, Pig, and Spark. But maybe the most important skill that a data scientist possesses is the ability to explain the significance of data in a way that can be easily understood by others. Check out our Data Scientist Salary Guide.

Data Analyst

A data analyst’s role is to collect, process, and perform statistical data analyses with the goal of helping companies make better business decisions. Data analysts are most often responsible for transforming data sets into usable forms, such as reports or presentations. Depending on the industry, this may involve gleaning insight from consumer data sets, making strategic recommendations based on dense financial data, or simply organizing messy data into a more accessible format. A qualified data analyst will have a solid understanding of R, Python, HTML, C/C++ and SQL. These positions are often on the lower end of the organizational chart; however, those are who just entering the data science field will find these roles to be some of the easiest to qualify for and you will have ample opportunity to learn and advance into higher level roles. Visit our Data Analyst Salary Guide. 

Data Engineer

Data engineers are the designers, builders, and managers of the information or big data infrastructure. They assist in developing the architecture that helps analyze and process data in a manner best suited for their organization. It is their role to also make sure those systems are performing smoothly. Data engineering differs from other data science careers in that it is focused on the systems and hardware that facilitates a company’s data activities, rather than analysis of the data itself. A data engineer has a background in software engineering as well as skills in the following languages: SQL, HIVe, Pig, R, Matlab, SAS, SPSS, Python, Java, and Ruby. Their duties also involve providing the company with valuable data warehousing solutions. This role is considered a senior position and requires an advanced degree and years of experience.

Business Analyst

The business analyst is often less technically oriented, but has a deep knowledge of the different business processes and embodies business intelligence. The role of the business analyst is to improve business processes by serving as a liaison between business and IT with a clear directive to focus on advancing strategic business objectives. Most business analysts are focused on producing usable deliverables, such as reports and presentations, that can be easily understood by others in the organization who aren’t data scientists themselves. Business analysts possess the basic skills of data visualization tools and data modeling, however their educational background is in business. The duties of a business analyst are very similar to those of a data analyst. Business analysis is an excellent career choice for someone that has a strong foundation in numbers and an active interest in business management or development. Visit our Business Analyst Salary Guide.

Marketing Analyst

A market analyst studies information to better assist companies in making informed decisions about market opportunities. The goal is to determine which product a company should produce and how to sell it. A market analyst uses statistical, math, and analytical skills while interpreting large data sets. This career is more of an entry level job in data science.

Data Architect

Thanks to the increasing importance of big data, data architect roles are becoming more common.  This position creates the blueprints for data management systems to integrate, centralize, protect, and maintain data sources. They understand the languages of SQL, XML, Hive, Pig, and Spark as well as the skills of warehouse solutions, systems development, and database architecture. It is a natural evolution from data analyst to database designer, combining both skill sets. The position requires an advanced degree and many years of experience.

Data and Analytics Manager

Data and analytics managers lead data science teams. These management positions not only possess data science technical skills, but also leadership and project management experience. They manage a variety of positions including: data engineers, data scientists, data analysts, and often serve as the spokesperson for the department. This role is a senior position that requires an advanced degree as well as many years of supervisory experience.

Business Intelligence Analyst

Business intelligence analysts gather data in a variety of ways, some of which include: mining a company’s computer data through software; reviewing competitor data and industry trends to develop an understanding of where the company stands in the overall picture; and identifying ways in which they can improve and reduce costs. This position requires an advanced degree and years of experience as a business analyst.

Data Mining Specialist

A data mining specialist is responsible for identifying patterns and relationships to help a company predict future behaviors. Through the process of transforming data into insights, a data mining specialist can help businesses make more intelligent, data driven decisions. To accomplish this, a data mining specialist uses statistical software to help research, mine data, and model relationships.

Statistician

A statistician is someone who works with mathematical techniques to help analyze and interpret data to solve real world problems. Statistician’s can work in a variety of fields including (but not limited to) academia, government, healthcare, business, engineering, and marketing.  A statistician can choose to work as a generalist but specialization within a specific field can also help them stand out to potential employers.

Machine Learning Engineer

Database Administrator

Database Developer

  • Career Guides
  • Data Scientist
  • Data Analyst
  • Data Architect
  • Data Engineer
  • Business Analyst
  • Marketing Analyst
  • Data And Analytics Manager
  • Business Intelligence Analyst
  • Data Mining Specialist
  • Statistician
  • Machine Learning Engineer
  • Database Administrator
  • Database Developer
  • Data Science Toolkit
  • Hadoop
  • Hive
  • Java
  • Python
  • R
  • SAS
  • SQL
  • Tableau
  • Data Science Articles
  • Artificial Intelligence as a Trending Field
  • Data Mining vs. Machine Learning
  • Business Analyst vs. Data Scientist
  • Data Scientist vs. Software Engineer
  • Data Science vs. Computer Science
  • Data Engineer vs. Data Scientist
  • Data Analyst vs. Data Scientist
  • Data Science vs. Statistics
  • Data Science in Health Care
  • Guide to a Career in Criminal Intelligence
  • What is Data Analytics?
  • What is Business Analytics?
  • What is Quantum Machine Learning?
  • What is Predictive Analytics?
  • Guide to Geographic Information System (GIS) Careers
  • Guide to A Career in Health Informatics
  • Data Science Ph.D.
  • Expert Interview: Sandra Altman
  • Expert Interview: Tony Johnson
  • Expert Interview: Bob Muenchen
  • Industries Using Data Science
  • Artificial Intelligence
  • Biotechnology
  • Finance
  • Health Care
  • Insurance
  • Law Enforcement
  • Logistics
  • Marketing and Advertising
  • Sports
  • Clean Energy

© Copyright 2021 https://www.discoverdatascience.org · All Rights Reserved

  • Home
  • About Us
  • Privacy Policy
  • Terms of Use
We use cookies to ensure that we give you the best experience on our website. OkNo