DiscoverDataScience.org

  • Online
    • Online Masters in Business Analytics
    • Online Masters in Data Analytics
    • Online Masters in Data Science
    • Online Masters in Health Informatics
    • Online Masters in Information Systems
    • Top Affordable Online Master’s in Data Science
  • Programs
        • Bachelors in Data Science
        • Minor in Data Science
        • Masters in Data Science
        • MBA in Data Science / Data Analytics
        • Data Science PhD Programs
        • Additional Programs
        • Data Science Bootcamps
        • Data Science Certificate Programs
        • Associates Degree in Data Science
  • Related Programs
        • Masters in Business Analytics Programs
        • Masters in Data Analytics Programs
        • Masters in Health Informatics Programs
        • Masters in Information Systems Programs
        • PhD in Health Informatics
        • PhD in Information Systems
        • Other Degrees and Certificate Programs
        • Accounting Analytics
        • Actuarial Science
        • Cyber Security
        • Data Analytics and Visualization
        • Geographic Information Systems (GIS)
        • Sports Analytics
  • Schools By State
    • California
    • Florida
    • Georgia
    • Maryland
    • New Jersey
    • New York
    • Pennsylvania
    • Texas
    • Virginia
    • All Schools by State
  • Careers & Salary
        • Career Guides – How to Become:
        • Business Analyst
        • Business Intelligence Analyst
        • Data Analyst
        • Data Scientist
        • Machine Learning Engineer
        • Statistician
        • All Career Guides
        • Salary Guides
        • Careers in Data Science
        • Business Analyst
        • Data Analyst
        • Data Scientist
  • Resources
        • Articles
        • Data Science in the Health Care Industry
        • Data Storytelling
        • How to Use Deepfake
        • Journey through Data Science with the Data Professor
        • Top Reasons to Become a Data Scientist
        • What is Python and Why Important
        • + All Articles
        • FAQ
        • Data Analyst vs Data Scientist
        • Data Science vs Computer Science
        • Do You Need a PhD to Become a Data Scientist?
        • How to Get a Job as a Data Scientist?
        • Is Data Science Hard?
        • Is a PhD in Data Science Worth It?
        • What Can I Do With a Masters in Statistics?
        • What is Business Analytics?
        • What is Data Analytics?
        • +All FAQs
        • Social Good
        • Clean Water
        • Cyberbullying
        • Mental Health
        • Nonprofits
        • +All Social Good
        • Data Science in Industry
        • Artificial Intelligence AI
        • Biotechnology
        • Clean Energy
        • Health Care
        • Logistics
        • Marketing
        • Sports
        • + All Industries
        • Data Science Training Toolkits
        • Java
        • SAS
        • SQL
        • Tableau
        • +All Training
        • More Resources & Helpfull Guides
        • Data Science and Sustainability
        • Expert Interviews
        • Exploring a Career with Numbers
        • Income Sharing Agreements
        • Making Room for Diverse Populations in STEM
        • Scholarship Guide
        • +More Resources
        • Top Picks
        • Best Master’s Data Science Programs for 2023
        • Best Bachelor’s Data Science Programs for 2023
        • The Most Affordable Data Science Bachelor’s Programs for 2023
        • The Most Affordable Data Science Master’s Programs for 2023
FIND A PROGRAM
1
2
3
4
Sponsored Content

What’s the difference between Data Science and Computer Science?

Computer science (CS) made its debut with mainframe computers in the 1960s and 1970s and is a field that has been developing for decades. Sub-disciplines include computer architecture, data structures, programming languages, software engineering, web-design, database development, machine learning, algorithm development, and artificial intelligence. CS is an umbrella that covers many different areas.

Data science, on the other hand, is a more focused field that centers in on one thing – big data. Occasionally, data science and CS are perceived to be the same thing, most likely because data scientists do some programming; but computer scientists and data scientists have different end games. Computer scientists generate software that data scientist’s use, while data scientists apply that software to identify trends and find significance through statistics.

FIND SCHOOLS
Sponsored Content

Featured Programs:
Sponsored School(s)
Southern New Hampshire University Logo
Southern New Hampshire University
Featured Program: AS, BS and MS Data Analytics
Request Info
UC Berkeley Logo
UC Berkeley
Featured Program: UC Berkeley’s Master of Information and Data Science | Online
Request Info
George Mason University Logo
George Mason University
Featured Program: MS in Data Analytics Engineering and Certificate in Data Analytics
Request Info
Grand Canyon University Logo
Grand Canyon University
Featured Program: Online Technology Master's Degree Programs in the following career paths: IT Project Manager, Information Technology Manager, Database Administrator, Computer Systems Analyst and many more.
Request Info
Purdue Global Logo
Purdue Global
Featured Program: Associate of Applied Science in Information Technology - Data Analytics; Master of Science in Information Technology - Data Analytics; Professional Focus + Google Data Analytics Certificate
Request Info
Arizona State University - Online Logo
Arizona State University - Online
Featured Program: Online Bachelor of Science in Data Science
Request Info
University of Virginia Logo
University of Virginia
Featured Program: A top-tier master's in data science designed for working professionals
Request Info

Programming and the Emergence of “Big Data”

According to Wikipedia, a pivotal article called Data Science: An Action Plan for Expanding the Technical Areas of the Field of Statistics written by William Cleveland gave it a name in 2001, well after CS was on the scene. CS set the stage for data science in that it provided the programming languages necessary to process big data.

Programmers are computer scientists that focus on software development. They use specific programming languages, like C++ and JAVA, to implement specific algorithms. To do so, they need to understand the problem, the data involved with the problem, and figure out the proper algorithm to solve the problem. Computer scientists are trained not only to write code but also to understand this entire process.

Computer scientists incorporate data structures into their programs, which provide a method of organizing big data so that its elements are easily retrievable. Only with this capacity for complex data structures like data frames and arrays is it possible to do the sophisticated analysis that data scientists are able to complete. Once data is properly structured, data scientists then analyze it with programming languages created by computer scientists.

Development vs Application

Computer scientists are problem solvers and developers. They solve problems by developing algorithms and implementing them into software. Some create websites using JavaScript, HTML, and CSS. Others build databases with SQL. Machine learning is a sub-discipline of CS where advanced algorithms are developed to learn from data. For a simple machine learning example, imagine a device that is a camera with processing abilities. That device can be trained to learn what a dog is by being shown thousands of pictures of different dogs. Once the computer is “trained” it will be able to be given any novel image and label it as “dog” or “non-dog”. This simple example of machine learning can be developed into advanced applications like facial recognition. Artificial intelligence (AI) goes even further, aiming to develop algorithms and devices that replicate human thinking. AI makes use of sophisticated concepts and methods, such as neural networks, to simulate human cognitive mechanisms.

Data scientists are generally not developers, although they do heavily rely on code and programming languages such as Python and R in order to run statistical analysis to identify trends. They do data mining to isolate data sets of interest and then they characterize the data. They want to know distributions, or where the data falls. They need to calculate means, medians, variance, and standard deviations so that they can properly normalize data, because more often than not, big data does not look like a perfect bell curve. They calculate correlations and identify significant differences using t-tests and other measures. In short, data scientists are math experts. They know how to find data sets of interest, they know how to process and analyze those data sets, and they know how to identify important trends.

The Art of Presentation

A significant portion of a data scientist’s job is to determine the best possible way to communicate results. Visual representations are just as important as the numbers behind them, and data scientists have to know standard images such as scatter plots and histograms as well as more complicated images like volcano plots and heat maps. The average Joe does not know much about statistics, but he or she can understand well-designed images that convey significant results. Data scientists need to know how to make their results compelling.

Computer scientists contribute to presentations by implementing or creating functionality. PowerPoint and Google slides are standard presentation platforms that were generated by computer scientists. The packages within R or Python that generate the images were created by computer scientists as well.

Infrastructure and Business

All businesses have an Information Technology (IT) infrastructure that includes all computers, networks, software, operating systems, and servers. Computer scientists designed all the individual components of that infrastructure. In addition, computer scientists generated company databases and security software.

More and more businesses are hiring data scientists, and as big data grows, so do the number of jobs. The more data collected, the more information there is to analyze. Companies are starting to realize that data science and the predictions and trends it provides can significantly boost business. The corporate environment is changing to be more proactive instead of reactive, thanks to data science.

To Academia and Beyond

Data science is hot right now and getting even hotter as more people hear about it. Higher education is scrambling to keep up with its demand and scratching their heads trying to figure out how to develop the right degree programs, because big data is collected in many different fields. Math departments associate data science with statistics, business schools approach data science with a marketing and presentation lens, while computer scientists link data science to machine learning, as math models are the scaffold that machines compare to input in order to evaluate. Biologists are also utilizing data science in bioinformatics and are therefore seeking to incorporate it into their programs.

An emerging professional considering a job in CS or data science has a lot of options. CS is a well-established field and there is demand for software and hardware engineering, web and database design, machine learning, and AI. Data science is a fast-growing field due to the emergence of big data applications and the need to learn from big data.

FIND SCHOOLS
Sponsored Content
FIND A PROGRAM
1
2
3
4
Sponsored Content
  • Career Guides
  • Artificial Intelligence Engineer
  • Business Analyst
  • Business Intelligence Analyst
  • Data Analyst
  • Data Analytics Manager
  • Data Architect
  • Data Engineer
  • Data Mining Specialist
  • Database Administrator
  • Database Developer
  • Information Security Analyst
  • Machine Learning Engineer
  • Marketing Analyst
  • Software Developer
  • Statistician
  • Data Science Toolkit
  • Hadoop
  • Hive
  • Java
  • Python
  • R
  • SAS
  • SQL
  • Tableau
  • Data Science Articles
  • 10 Data Science Types
  • AI and Data Science
  • The Increasing Importance of Health Informatics
  • Python Growth Rate Predictions
  • Data-as-a-Service (DaaS)
  • Data Science Trends 2023
  • Cybersecurity Analyst vs. Engineer
  • Data Science in Education
  • Do You Need a PhD to Become a Data Scientist?
  • Best Big Data Conferences 2023
  • Data Science Focus Areas
  • Is a PhD in Data Science Worth It?
  • Is Data Science Hard?
  • Marketing Analytics Degree Online
  • Transferable Data Science Skills
  • Transitioning to Data Science
  • What Can I Do With a Masters in Statistics?
  • What Companies Hire Data Scientists?
  • What Is Cyber Science?
  • How to Read Crypto Charts
  • Breaking Down the Top Data Science Algorithms + Methods
  • Journey through Data Science with the Data Professor
  • How to Build a Data Science Portfolio & Resume
  • The Significance of Data Community Building
  • Developer Impostor Syndrome
  • How to Improve Programming Skills
  • Data Science Degree Vs. Training
  • Why Data Destruction is Important for your Business
  • Data Storytelling: Mastering Data Science’s Core Skillset
  • What is a Marketing Funnel and How to Create One
  • Building a Data Science Brand
  • Interviewing for Data Careers
  • Top 5 Reasons to Become a Data Scientist
  • What is Data Analytics?
  • What is Business Analytics?
  • What is Quantum Machine Learning?
  • What is Predictive Analytics?
  • Data Science vs. Statistics
  • Data Mining vs. Machine Learning
  • Business Analyst vs. Data Scientist
  • Data Scientist vs. Software Engineer
  • Data Science vs. Computer Science
  • Data Engineer vs. Data Scientist
  • Data Analyst vs. Data Scientist
  • How to Use Deepfake Technology
  • Java vs. JavaScript
  • What Is Python Used For & Why Is It Important to Learn?
  • Artificial Intelligence as a Trending Field
  • Data Science in Health Care
  • Guide to a Career in Criminal Intelligence
  • Guide to a Career in Health Informatics
  • Guide to Geographic Information System (GIS) Careers
  • Data Science Ph.D.
  • Expert Interview: Dr. Sudipta Dasmohapatra
  • Expert Interview: Sandra Altman
  • Expert Interview: Tony Johnson
  • Expert Interview: Bob Muenchen
  • Industries Using Data Science
  • Artificial Intelligence
  • Biotechnology
  • Finance
  • Health Care
  • Insurance
  • Law Enforcement
  • Logistics
  • Marketing and Advertising
  • Sports
  • Clean Energy
  • Online Guides
  • Data Science
  • Data Analytics
  • Business Analytics
  • Information Systems
  • Health Informatics
  • Programs
  • Online
  • Resources
  • Related Programs

© Copyright 2025 | https://www.discoverdatascience.org | All Rights Reserved

  • Home
  • About Us
  • Privacy Policy
  • Terms of Use