DiscoverDataScience.org

  • Online
    • Online Masters in Business Analytics
    • Online Masters in Data Analytics
    • Online Masters in Data Science
    • Online Masters in Health Informatics
    • Online Masters in Information Systems
    • Top Affordable Online Master’s in Data Science
  • Programs
        • Bachelors in Data Science
        • Minor in Data Science
        • Masters in Data Science
        • MBA in Data Science / Data Analytics
        • Data Science PhD Programs
        • Additional Programs
        • Data Science Bootcamps
        • Data Science Certificate Programs
        • Associates Degree in Data Science
  • Related Programs
        • Masters in Business Analytics Programs
        • Masters in Data Analytics Programs
        • Masters in Health Informatics Programs
        • Masters in Information Systems Programs
        • PhD in Health Informatics
        • PhD in Information Systems
        • Other Degrees and Certificate Programs
        • Accounting Analytics
        • Actuarial Science
        • Cyber Security
        • Data Analytics and Visualization
        • Geographic Information Systems (GIS)
        • Sports Analytics
  • Schools By State
    • California
    • Florida
    • Georgia
    • Maryland
    • New Jersey
    • New York
    • Pennsylvania
    • Texas
    • Virginia
    • All Schools by State
  • Careers & Salary
        • Career Guides – How to Become:
        • Business Analyst
        • Business Intelligence Analyst
        • Data Analyst
        • Data Scientist
        • Machine Learning Engineer
        • Statistician
        • All Career Guides
        • Salary Guides
        • Careers in Data Science
        • Business Analyst
        • Data Analyst
        • Data Scientist
  • Resources
        • Articles
        • Data Science in the Health Care Industry
        • Data Storytelling
        • How to Use Deepfake
        • Journey through Data Science with the Data Professor
        • Top Reasons to Become a Data Scientist
        • What is Python and Why Important
        • + All Articles
        • FAQ
        • Data Analyst vs Data Scientist
        • Data Science vs Computer Science
        • Do You Need a PhD to Become a Data Scientist?
        • How to Get a Job as a Data Scientist?
        • Is Data Science Hard?
        • Is a PhD in Data Science Worth It?
        • What Can I Do With a Masters in Statistics?
        • What is Business Analytics?
        • What is Data Analytics?
        • +All FAQs
        • Social Good
        • Clean Water
        • Cyberbullying
        • Mental Health
        • Nonprofits
        • +All Social Good
        • Data Science in Industry
        • Artificial Intelligence AI
        • Biotechnology
        • Clean Energy
        • Health Care
        • Logistics
        • Marketing
        • Sports
        • + All Industries
        • Data Science Training Toolkits
        • Java
        • SAS
        • SQL
        • Tableau
        • +All Training
        • More Resources & Helpfull Guides
        • Data Science and Sustainability
        • Expert Interviews
        • Exploring a Career with Numbers
        • Income Sharing Agreements
        • Making Room for Diverse Populations in STEM
        • Scholarship Guide
        • +More Resources
        • Top Picks
        • Best Master’s Data Science Programs for 2023
        • Best Bachelor’s Data Science Programs for 2023
        • The Most Affordable Data Science Bachelor’s Programs for 2023
        • The Most Affordable Data Science Master’s Programs for 2023
FIND A PROGRAM
1
2
3
4
Sponsored Content

The Data Scientist’s Toolkit: R Programming Language

By Kat Campise, Data Scientist, Ph.D.

Just about everyone in the programming/computer science industry has heard of Python: it’s the programming language most frequently listed in job descriptions (aside from Java or JavaScript). But, within the data science community, R sits alongside Python as one of the go-to languages for all things data science related. Initially designed as a statistical calculation and graphical tool by Ross Ihaka and Robert Gentleman, who wrote about R in 1996, R now has over 10,000 packages available for a wide swath of computational capabilities including (the list below is meant only as a brief overview; for a more specific list, please see the CRAN Packages site):

  • Both basic and advanced statistics
  • Data cleaning
  • Data mining and scraping
  • Machine Learning
  • Graphics/plots

 

Featured Programs:
Sponsored School(s)
Southern New Hampshire University Logo
Southern New Hampshire University
Featured Program: AS, BS and MS Data Analytics
Request Info
UC Berkeley Logo
UC Berkeley
Featured Program: UC Berkeley’s Master of Information and Data Science | Online
Request Info
George Mason University Logo
George Mason University
Featured Program: MS in Data Analytics Engineering and Certificate in Data Analytics
Request Info
Grand Canyon University Logo
Grand Canyon University
Featured Program: Online Technology Master's Degree Programs in the following career paths: IT Project Manager, Information Technology Manager, Database Administrator, Computer Systems Analyst and many more.
Request Info
Purdue Global Logo
Purdue Global
Featured Program: Associate of Applied Science in Information Technology - Data Analytics; Master of Science in Information Technology - Data Analytics; Professional Focus + Google Data Analytics Certificate
Request Info
Arizona State University - Online Logo
Arizona State University - Online
Featured Program: Online Bachelor of Science in Data Science
Request Info
University of Virginia Logo
University of Virginia
Featured Program: A top-tier master's in data science designed for working professionals
Request Info

Given the ever-increasing R community, and the growing demand for R expertise throughout all industries, the TIOBE programming community index currently ranks R as the 11th most popular programming language; and its popularity continues to climb. But, with all of the other available languages, why use R?

FIND SCHOOLS
Sponsored Content

Why Use R?

Let’s get this fact out of the way: choosing a programming language is equal parts personal preference and what an employer requires. If you are an expert in R, but Corporation X uses Python, unless you can convince them otherwise or they are flexible about programming languages for data science, then you’ll need to make the switch. In fact, knowing how to perform the same (or similar) functions in both languages is ideal. But, if you’re just getting started in all things data science, and you are new to programming, then R is a great gateway for learning how to merge the worlds of statistics and programming:

  • R has a robust community that is constantly developing new packages and maintains several user groups where newbies, intermediates, and experts can exchange ideas and support new R users. Rather than slogging through R “How to” blogs, Stack Exchange, and Stack Overflow — which are quickly out of date due to consistent package updates and the release of brand new packages — R users can direct their questions precisely towards the R community. There is, however, one exception: R-bloggers is an excellent resource for all levels of R users. Keep in mind that R’s popularity is still growing while also being used primarily within the academic, healthcare, and government sectors (though many Google jobs call for R expertise). So, the more well-known resources for all things programming related aren’t as reliable for helping you to increase your understanding of how R can be used within data science.
  • In terms of statistical packages, R is completely free; it costs you nothing to download and get started. This is in contrast to software such as SPSS, SAS, and STATA, which can cost you hundreds if not thousands of dollars for a license. While some employers still use the aforementioned statistical programs, and becoming familiar with them is recommended, most data science courses — whether via massive online open courses (MOOCs) or the increasing number of degree programs — will use either R or Python for statistical analysis.

You don’t have to perform all analyses within the R environment by using the R programming language: you can run Python packages from R, and write R functions using C++. Additionally, due to its quickly increasing adoption rate, R is now compatible with AWS. As such, R is flexible as both a programming language and a statistical package.

Where to Learn R

In this age of open source and self-directed learning, there are a dizzying array of resources for learning R. It really comes down to which learning method most suits you.

  • Coursera, one of the largest MOOCs, has a number of R programming and R-focused data science courses available. Most courses you can audit for free, which means you may or may not have access to the quizzes and peer review process that lead to earning a certificate. If you’re strapped for cash and prefer to have a verified certificate to beef up your resume, you can apply for “Financial Aid” and take the entire course for free.
  • EdX, another MOOC, also offers self-study courses in Programming R for Data Science, Statistics and R, Introduction to R for Data Science, among many others. EdX also offers course auditing, where you’ll have access to the video lectures and quizzes but won’t earn a certificate unless you pay for the course.
  • DataCamp has a free Introduction to R learning module that takes you step by step through basic R functions. You have the ability to either practice online or via the DataCamp app (so you can learn on the go). As with Coursera and EdX, they limit the number of modules that you can access without cost.
  • In addition to Nanodegree programs such as Data Scientist Foundation, Udacity offers a free a Data Analysis with R course that focuses on exploratory data analysis (EDA).
  • Pluralsight is yet another resource for kick starting your R journey via their Try R module, where they will take you through expressions, logical values, data frames, and how to apply what you’ve learned to real-world data.

To get started with R, all you need to do is visit the R Project website, and download the latest version of R. For those who prefer an integrated development environment (IDE), RStudio offers an all in one code editor, debugger, and visualization package. If you prefer using a Jupyter Notebook, R is now available as a supported programming language and can either be downloaded from Jupyter’s website or via Anaconda. Since R is so flexible, both as a statistical package and a programming language, its usage continues to climb up the ladder as a reliable tool for a wide variety of statistical computations. For those who have either no programming or limited programming experience, familiarizing yourself with one programming language first will lay the groundwork for transferring that knowledge to other languages. Knowing multiple programming languages is ideal. But, for aspiring data scientists (who hopefully have some advanced statistical coursework or practical experience in statistics beyond simple descriptive statistics), R is the perfect introduction to applying analyses using a freely available and widely supported programming language.

FIND SCHOOLS
Sponsored Content
FIND A PROGRAM
1
2
3
4
Sponsored Content
  • Career Guides
  • Artificial Intelligence Engineer
  • Business Analyst
  • Business Intelligence Analyst
  • Data Analyst
  • Data Analytics Manager
  • Data Architect
  • Data Engineer
  • Data Mining Specialist
  • Database Administrator
  • Database Developer
  • Information Security Analyst
  • Machine Learning Engineer
  • Marketing Analyst
  • Software Developer
  • Statistician
  • Data Science Toolkit
  • Hadoop
  • Hive
  • Java
  • Python
  • R
  • SAS
  • SQL
  • Tableau
  • Data Science Articles
  • 10 Data Science Types
  • AI and Data Science
  • The Increasing Importance of Health Informatics
  • Python Growth Rate Predictions
  • Data-as-a-Service (DaaS)
  • Data Science Trends 2023
  • Cybersecurity Analyst vs. Engineer
  • Data Science in Education
  • Do You Need a PhD to Become a Data Scientist?
  • Best Big Data Conferences 2023
  • Data Science Focus Areas
  • Is a PhD in Data Science Worth It?
  • Is Data Science Hard?
  • Marketing Analytics Degree Online
  • Transferable Data Science Skills
  • Transitioning to Data Science
  • What Can I Do With a Masters in Statistics?
  • What Companies Hire Data Scientists?
  • What Is Cyber Science?
  • How to Read Crypto Charts
  • Breaking Down the Top Data Science Algorithms + Methods
  • Journey through Data Science with the Data Professor
  • How to Build a Data Science Portfolio & Resume
  • The Significance of Data Community Building
  • Developer Impostor Syndrome
  • How to Improve Programming Skills
  • Data Science Degree Vs. Training
  • Why Data Destruction is Important for your Business
  • Data Storytelling: Mastering Data Science’s Core Skillset
  • What is a Marketing Funnel and How to Create One
  • Building a Data Science Brand
  • Interviewing for Data Careers
  • Top 5 Reasons to Become a Data Scientist
  • What is Data Analytics?
  • What is Business Analytics?
  • What is Quantum Machine Learning?
  • What is Predictive Analytics?
  • Data Science vs. Statistics
  • Data Mining vs. Machine Learning
  • Business Analyst vs. Data Scientist
  • Data Scientist vs. Software Engineer
  • Data Science vs. Computer Science
  • Data Engineer vs. Data Scientist
  • Data Analyst vs. Data Scientist
  • How to Use Deepfake Technology
  • Java vs. JavaScript
  • What Is Python Used For & Why Is It Important to Learn?
  • Artificial Intelligence as a Trending Field
  • Data Science in Health Care
  • Guide to a Career in Criminal Intelligence
  • Guide to a Career in Health Informatics
  • Guide to Geographic Information System (GIS) Careers
  • Data Science Ph.D.
  • Expert Interview: Dr. Sudipta Dasmohapatra
  • Expert Interview: Sandra Altman
  • Expert Interview: Tony Johnson
  • Expert Interview: Bob Muenchen
  • Industries Using Data Science
  • Artificial Intelligence
  • Biotechnology
  • Finance
  • Health Care
  • Insurance
  • Law Enforcement
  • Logistics
  • Marketing and Advertising
  • Sports
  • Clean Energy
  • Online Guides
  • Data Science
  • Data Analytics
  • Business Analytics
  • Information Systems
  • Health Informatics
  • Programs
  • Online
  • Resources
  • Related Programs

© Copyright 2025 | https://www.discoverdatascience.org | All Rights Reserved

  • Home
  • About Us
  • Privacy Policy
  • Terms of Use